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ABSTRACT 
We investigate the application of a least squares finite element method for the solution of fluid flow 
problems. The least squares finite element method is based on the minimization of the L2 norm of the 
equation residuals. Upon discretization, the formulation results in a symmetric, positive definite matrix 
system which enables efficient iterative solvers to be used. The other motivations behind the development 
of least squares finite element methods are the applicability of higher order elements and the possibility 
of using the norm associated to the least squares functional for error estimation. For steady 
incompressible flows, we develop a method employing linear and quadratic triangular elements and compare 
their respective accuracy. For steady compressible flows, an implicit conservative least squares scheme 
which can capture shocks without the addition of artificial viscosity is proposed. A refinement strategy 
based upon the use of the least squares residuals is developed and several numerical examples are used to 
illustrate the capabilities of the method when implemented on unstructured triangular meshes. 

KEY WORDS Triangular elements Compressible flows Adaptive refinement 

INTRODUCTION 

A least squares finite element method has been proposed1,2 for the solution of the steady 
incompressible Navier-Stokes equations. The method is based on the minimization of the L2 
norm of the equation residuals and, using a finite element discretization, results in a symmetric, 
positive-definite matrix system. This is a major advantage over alternative finite element methods. 
For example, the mixed velocity-pressure formulation requires the solution of a saddle point 
problem and is therefore subject to the Ladyshenskaya-Babuska-Brezzi (LBB) stability 
condition3,4 which rules out the use of simple element forms. In the last decade, much effort 
has been devoted to the design of new mixed element forms satisfying the stability requirements 
and the reader is referred to chapter 12 of Reference 5 for an up-to-date description of the 
difficulties involved. Petrov-Galerkin formulations6-8 are an alternative in which the weighting 
functions are modified in such a way as to retain stability even when equal order interpolations 
are used for velocity and pressure. However, these methods rely on the choice of upwind 
parameters and also result in non-symmetric matrix systems when applied to the incompressible 
Navier-Stokes equations. 

In the next section the method originally proposed by Jiang1,9 for the steady Navier-Stokes 
equations is implemented using triangular elements in conjunction with an incomplete Choleski 
conjugate gradient algorithm. The least squares formulation falls into the general category of 
Petrov- Galerkin formulations while avoiding the above-mentioned difficulties. We also 
investigate the respective accuracy of linear and quadratic approximations. The performance of 
the least squares method is illustrated for high Reynolds number cavity flows and various flows 
past airfoils. 
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Later, a similar approach is proposed for the solution of the compressible Euler equations. 
Following recent developments by Jiang and Povinelli2 for the Euler equations written in a 
non-conservative form and also by Bruneau10,11 for the steady Euler equations, we propose a 
conservative implicit time differenced finite element scheme, applicable on unstructured meshes, 
which is based on the minimization of the least squares norm of the equations residuals. The 
scheme is unconditionally stable and we show that the inherent numerical diffusion of the scheme 
is sufficient to capture shocks without the need for explicitly adding artificial dissipation. 

Typical finite element methods for the solution of the Euler equations are the Taylor-Galerkin 
formulation12 and the streamline upwind Petrov-Galerkin (SUPG) method13. These methods 
can be applied on unstructured meshes and, with the incorporation of adaptive refinement 
techniques, have proved to be very successful12,14,15. We propose an adaptive refinement 
technique in which the adaptivity is driven by the norm associated with the least squares 
formulation. The performance of the least square finite element method and the refinement 
strategy is illustrated by several numerical experiments. 

LEAST SQUARES SOLUTION OF STEADY INCOMPRESSIBLE FLOWS 
We consider first the case of the incompressible Navier-Stokes equations. The formulation to 
be used is first described in some detail. 

Vorticity-velocity-pressure formulation 
The least squares finite element method is based on the minimization of the L2-norm of the 

equation residuals. Therefore, the presence of second order derivatives requires the use of 
expensive C1 approximations. One possible way to avoid this difficulty is to introduce the 
vorticity as a new variable and express the viscous terms in terms of the vorticity. Another 
possibility would be to introduce the stresses as independent variables but we believe this would 
not result in a cost effective formulation. In two dimensions, the vorticity is defined by: 

(1) 

where u and v are non-dimensional velocity components. The steady incompressible Navier-
Stokes equations can now be written as the first-order dimensionless differential system: 

= fx (2) 

= fy (3) 

+ = 0 (4) 

where p is the pressure, Re the Reynolds number and fx and fy are body force components. 
The convective terms in the two momentum equations can be linearized by successive 

substitution. If un and vn denote the velocity components at the previous non-linear step, the 
least squares method consists in minimizing the functional: 

π = dΩ + 

dΩ + dΩ (5) 
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Minimization of the functional π and interpolation using finite element basis functions leads to 
the least squares finite element formulation: 

KUn + 1 = F (6) 
where 

Kij= dΩ (7) 

and 

Fi = f dΩ (8) 

Here 

M = A= B= 

f = and Un + 1 = (9) 

and Ni denotes the finite element shape functions used to interpolate the nodal unknowns 
according to: 

Un + 1 = Ni U i
n + 1 (10) 

An alternative possibility would be to use different weightings for each equation separately. 
The condition number of the resulting system would be affected and this could in turn improve 
the performance of any iterative solver. However, this possibility has not been investigated to 
date. It is also possible to use different numerical integration rules for each equation, although 
this cannot be theoretically justified (as in the Galerkin penalty formulation). Our numerical 
experiments indicate that the use of this procedure greatly affects the quality of the numerical 
results. 

It should be noted that the equation system (6) is symmetric positive-definite and therefore 
iterative solution techniques can be used. We describe in the next section an incomplete 
factorization conjugate gradient algorithm. 

Numerical results for the incompressible Navier-Stokes equations were reported in References 
1 and 2 using a least square formulation and bilinear quadrilateral elements (with 1 integration 
point). The element chosen here is the quadratic triangle which should perform well to represent 
boundary layers. An example using linear triangles is also shown later. 

Incomplete Choleski conjugate gradient algorithm 
An incomplete Choleski conjugate gradient algorithm was used to solve the equation system 

(6). For large problems, the memory required to perform the complete factorization of K can 
become prohibitively large. It is therefore advantageous to perform only a partial elimination 
of K and use this approximate factorization as a preconditioner in the conjugate gradient 
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algorithm. Kershaw16 proposed an incomplete factorization which discards coefficients that 
are outside a pre-specified storage area. The technique advocated here was proposed by Ajiz 
and Jennings17 and only discards coefficients that fall below a pre-specified level. Since each 
coefficient is compared to the diagonal terms present at the time, this criterion is not ideal as 
it does not necessarily reflect the importance of this coefficient. However, this would only be 
possible if a complete factorization was performed which is precisely what we try to avoid. 

The main elements of the algorithm are briefly described below. The coefficient matrix K is 
factorized according to: 

K=LLT – C (11) 
where L is a lower triangular incomplete Choleski factorization and C is the matrix of coefficients 
rejected. If the coefficients of L are known for columns 1 to i — 1 we can compute: 

Iii Iji = kji – (12) 

Off diagonal coefficients are rejected if: 

l2
j i < ψ2 (13) 

where ψ is a specified parameter ranging from 0 to 1. The choice ψ = 0 corresponds to the 
complete Choleski factorization. 

This technique was found to be very efficient. However, it sometimes led to the loss of positive 
definiteness and therefore the diagonal scaling advocated by Ajiz and Jennings17 was also 
implemented in the code. This scaling ensures that the positive definiteness is conserved and that 
the factorization will not fail. 

For practical computations, the arrays K and L are stored as vectors which contain only the 
non-zero entries but this requires the addition of some integer vectors to identify the address 
of each coefficient. The memory required to store the array K is relatively small and it is therefore 
possible to tackle very large problems if we use larger values of ψ. However, the quality of the 
preconditioner deteriorates and a larger number of conjugate gradient iterations might be 
necessary in such cases. In most applications, the technique described here was found to be both 
efficient and accurate. 

Once the incomplete factorization is obtained, the equation system is modified as: 
L–1KL–T y = b (14) 

where y = LTUn + 1 and b = L–1 f. 
This system is solved by means of the conjugate gradient method for increments 

∆U=Un + 1 – Un. Starting from: 
y = 0 and d0 = r0 = L–1(F–KUn) (15) 

we iterate according to: 
αk = (rk)Trk)/(dk)T(L–1KL –T)dk (16) 

yk + 1 = yk + αkdk (17) 
rk + 1 = rk –αk(L-1KL-T)dk (18) 

βk = (rk + 1)Trk + 1/(rk)Trk (19) 
d k + 1 = r k + 1+ βk dk (20) 

The node numbering is important since the computation of the preconditioning matrix is 
based on factorization. A Cuthill-Mackee algorithm18 has been used to reduce the bandwidth 
of the K matrix in the computations reported here. 
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The costly part of the iterative solver is the computation of the incomplete Choleski 
factorization matrix L. To reduce this cost, the same matrix is used for several iterations when 
the convergence of the non-linear iteration has reached a certain preset value. 

In practical computations and in most of the problems presented in the next section, small 
values of ψ (i.e. 0.01 < ψ < 0.1) are used. It is found that the use of 10 to 30 conjugate gradient 
iterations ((16) to (20)) is generally sufficient at each non-linear step. 

Numerical examples 
Driven cavity flow. This is a well-known test example26. The Reynolds number in this case is 

103 and the domain was discretized using a regular 40 × 40 mesh of quadratic triangular elements 
shown in Figure 1a. The pressure contours and flow pattern are displayed in Figures lb and 1c 
respectively. It can be observed that the predictions of the least squares finite element method 
compare favourably with available published data26,28. 

Inviscid flow past a NACA0012 airfoil. This second example is used to compare the effect of using 
linear and quadratic approximations. The inviscid condition is simply represented by eliminating 
the vorticity from the two momentum equations. The tangency condition along the airfoil is 
weakly imposed in a least square sense by simply adding a boundary integral term to enforce 
zero normal velocity. 
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The mesh of quadratic elements is displayed in Figure 2a and consists of 3840 elements and 
7840 points. A mesh of linear triangles was obtained by subdividing each quadratic element into 
four linear elements, thus retaining the same number of points. 

The pressure solutions obtained are shown in Figures 2b and 2c. The comparison of the results 
obtained with the two approximations shows that the linear element is far less accurate than 
the quadratic element near the leading edge. This difference can probably be attributed to the 
inability of the linear approximation to properly represent the incompressibility condition. 

Viscous flow past a NACA0012 airfoil at incidence. This example involves the simulation of a 
viscous flow (Re = 103) past an airfoil at an angle of attack of 10°. The mesh consists of 4259 
quadratic elements and 8639 points and is displayed in Figure 3a. Note that a structured local 
mesh consisting of four layers of elements has been added around the airfoil to aid the capture 
of the boundary layer. The pressure contours and pressure distribution over the airfoil are shown 
in Figure 3b. The vorticity contours are shown in Figure 3c. 
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LEAST SQUARES FINITE ELEMENT SOLUTION OF COMPRESSIBLE FLOWS 
Least squares finite element formulations have already been applied with some success for the 
Euler equations2,10,11,19. Jiang et al.2 propose an implicit time differenced least squares 
formulation for the Euler equations written in terms of non-conservative variables. Numerical 
examples are included which show the good shock capturing properties of the scheme. Bruneau 
develops10 a least squares finite element method which directly solves the steady Euler equations 
using Newton iterations. Again good shock capturing properties are illustrated. These ideas are 
extended in this section and applied to the solution of the iso-enthalpic Euler equations written 
in conservative form. The formulation is based on the minimization of the L2 norm of the time 
differenced equations. The scheme is implicit, unconditionally stable and the results indicate 
that the numerical diffusion of the scheme is sufficient to solve shocked flows using linear 
triangular elements. The norm associated with the least squares formulation provides a natural 
error norm which is used for mesh refinement. 

Formulation 
The formulation proposed here considers the Euler equations in conservative form in which 

the unsteady energy equation has been replaced by the condition of constant enthalpy, which 
holds at steady state. In 2 dimensions, the resulting hyperbolic system can be expressed as: 

= 0 (21) 

where 

U= f = g = (22) 

Here ρ, p, u and v denote respectively the density, pressure and velocity components. The pressure 
is calculated according to the relationship 

p = (23) 

where y is the ratio of specific heats and H0 is the constant enthalpy calculated from the free 
stream conditions. Note that the equations are written in a non-dimensional form. 

A simple backward difference procedure is used to step forward in time and (21) is replaced by: 

(24) 

where ∆U = Un + 1 — Un, At is the increment in time and An and Bn are the Jacobian matrices 
which have been linearized in time by setting An=A(Un) and Bn =B(Un). 

The basic least squares method used in the previous section is now applied to minimize the L2 
norm of (24) with respect to the increments ∆U. If the domain is discretized using 3-noded 
triangular elements with piecewise linear interpolations for ∆U in the form: 

∆U = Ni∆Ui (25) 
the least squares finite element formulation becomes 

Kij∆Uj = Fi (26) 
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where 

Kij = dΩ (27) 

and 

Fi= – dΩ (28) 

The Jacobian matrices An and Bn are assumed to be constant over each element and the fluxes 
fn and gn are computed at the nodes and vary linearly over each element according to: 

fn = Nif(Un
i ) and gn=Nig(Un

i ) (29) 
The right hand side, which should vanish at steady state, is now modified as: 

Fi= – ∆tNT
i dΩ – ∆t2 dΩ Uu

j (30) 

for reasons which will be explained in the next section. 
The second term in (30) represents the internal dissipation of the least squares formulation 

and is proportional to At. Therefore, the steady solution will be dependent on ∆t and it is very 
important to use local time steps, not only to enhance the convergence but also to avoid 
oscillations that would occur if the CFL number is too small somewhere in the mesh. The time 
step is calculated at each node according to: 

∆t = CFL · (31) 

where h is the minimum size of all the elements surrounding the node, λmax is the maximum 
eigenvalue of the present hyperbolic system (see for example Reference (20)) and CFL is a user 
prescribed constant. 

With the approximation adopted here and the use of linear triangular elements, numerical 
integration is not needed. The formulation can, however, be easily extended to higher order 
elements10. The incomplete Choleski-conjugate gradient solver described is used to solve the 
linear system at each time step. For small CFL numbers, more efficient iterative solvers could 
be used due to the diagonal dominance of K. 

It should be noted that, if the Jacobian matrices are symmetric (i.e. written in terms of entropy 
variables21,22), the scheme described here becomes similar to the centred implicit scheme of 
Lerat23. 

Adaptive refinement strategy based on least squares residuals 
We recall that the second term on the right hand side of (30) was modified and written as: 

At2 dΩ U n
j (32) 

This modification was motivated by the fact that (32) represents the least squares residuals of 
the steady Euler equations. This naturally defines a norm and a measure of the error which can 
be used for adaptive refinement25. Note also that since this term effectively represents the 
numerical diffusion of the scheme, it can be anticipated that the error thus defined will be 
important across shocks or more generally in regions of large variations. 

We define the error for each element as: 

El = dΩ U n
j (33) 
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and the error indicator as: 

β = (34) 

The refinement stretegy is then to refine all these elements for which the indicator is larger 
than a certain specified value. Let ΩR denote the region of elements for which refinement is 
needed. Each triangle of ΩR is subdivided into four smaller triangles and, to avoid the problem 
of 'hanging nodes', transition elements are introduced. If a transition element has one side along 
the boundary of ΩR it is subdivided into 2. If a transition element has two sides along the 
boundary of ΩR , it is subdivided into 3. 

Various mesh enhancement techniques (i.e. to avoid badly deformed elements) can also be 
added. These techniques are described in detail in Reference 24. 

Numerical examples 
Subsonic flow past a cylinder. The first example is a case of subsonic flow past a cylinder. The 

free stream Mach number is 0.5. Due to the symmetry, only half of the cylinder is considered. 
A detail of the mesh of linear triangular elements is displayed in Figure 4a. The global mesh 
consists of 4096 elements and 2145 points and the outer boundary is situated at approximately 
20 diameters from the cylinder. As in the inviscid incompressible case, the tangency condition 



108 D. LEFEBVRE, J. PERAIRE AND K. MORGAN 



LEAST SQUARES FINITE ELEMENT SOLUTIONS 109 

is imposed weakly via the least squares functional and the pressure is corrected to obtain a 
conservative approximation of the normal momentum equation. 

The main purpose of this first example is to illustrate the influence of the choice of the CFL 
number on accuracy and convergence. Figure 4b illustrates the convergence of the L2 norm of 
the time derivative of the density for various CFL numbers. As expected, the convergence rate 
improves with increasing CFL numbers. The oscillations in the convergence history are due to 
the variations of the local time steps. The influence of the CFL number on the computed solution 
is illustrated in Figures 4c, d and e. For CFL=2, the shock is well represented but oscillations 
before the shock are appearing. As the CFL number increases, the shock is diffused and has 
almost disappeared for a CFL number of 10. 

Supersonic flow past a cylinder and mesh refinement. The next example consists of a supersonic 
flow past a cylinder and illustrates the refinement technique described above. The free stream 
Mach number is 3. Due to the symmetry, only half of the cylinder is considered. The first mesh 
used is a structured polar mesh which consists of 4096 elements and 2145 points (Figure 5a). 
The time step is chosen as to obtain a uniform CFL number of 5. The pressure solution obtained 
with this mesh is displayed in Figure 5d. 
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Two successive mesh refinements are performed from this initial solution. The first mesh 
refinement is illustrated in Figure 5b. The new mesh consists of 5718 elements and 2970 points. 
It can be observed that the error indicator is not only active across the bow shock but also 
near the stagnation point and across the rear shock. This is further illustrated by a second mesh 
refinement depicted in Figure 5c. The new mesh consists of 7490 elements and 3861 points. The 
mesh 'smoothing' technique described in Reference 24 was used for this mesh to remove badly 
deformed elements. The pressure solution obtained with this mesh is displayed in Figure 5e and 
the convergence was achieved after less than 200 time steps starting from the solution obtained 
with the previous mesh. 

Supersonic blunt body and mesh refinement. In this example, we illustrate the capability of the 
least squares method to capture strong shocks without the addition of artificial viscosity. The 
test problem is that of a supersonic flow past a blunt body. The free stream Mach number is 
6.57. The geometry and discretization of the domain is shown in Figure 6a. The mesh consists 
of 3263 elements and 1712 points. Free stream conditions are imposed at the inlet and the outlet 
boundary is left free. 

The influence of the choice of the CFL number is illustrated in Figures 6b, c and d. For 
CFL= 1, the solution is oscillatory and the convergence slow. These oscillations disappear for 
higher CFL numbers. Note that, for CFL=5, the shock is captured within two elements. 
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Figure 7 illustrates the mesh refinement strategy described earlier. The solutions were obtained 
using a CFL number of 5. A first refinement is shown in Figure 7a. The new mesh consists of 
4194 elements and 2180 points and it can be observed that the error indicator is only active 
along the shock. This is further illustrated by the second refinement shown in Figure 7b. The 
new mesh now consists of 5291 elements and 2730 points and the improvement of the computed 
solution is evident. 

Transonic flow past a NACA0012 at incidence. As a last example, we consider the problem of a 
transonic flow past a NACA0012 airfoil with an angle of attack of 1 degree. The free stream Mach 
number is 0.85. The first mesh is depicted in Figure 8a and consists of 3840 elements and 2000 
points. The first solution was obtained using a CFL number of 5. 

A refinement is illustrated in Figure 8b. The new mesh consists of 5740 elements and 2969 
points. It should be noted that in this case the error indicator is not only active across the 
shocks but also near the leading and trailing edge where the resolution was insufficient in the 
first mesh. The pressure and Mach number solutions obtained with this second mesh are shown 
in Figures 8c and d respectively. It should be noted that a thin boundary layer is present on the 
upper and lower surfaces of the airfoil. This explains the small discrepancies in the shock locations 
when compared to highly accurate solutions of this test problem27. 
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CONCLUSIONS 
We have presented some early results obtained with a least squares finite element method using 
triangular elements and unstructured meshes. The method is both simple and accurate. In 
particular, a number of complex compressible flow problems have been solved using the least 
squares formulation without any added artificial dissipation and improved solutions have been 
obtained with the refinement technique based on the least squares residuals. 

We believe the method has some valuable merits and we are currently working on its extension 
to solve the full Euler system and also the compressible Navier-Stokes equations. Another 
possibility we are investigating, is the use of higher order elements. Early experiments with the 
full Euler system revealed that the method can become unstable in complex flow situations. The 
same observation was made with higher order elements. Our work will be directed towards 
improving the efficiency of the formulation in such cases. 
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